無預處理深度學習之生物辨識認證系統於數位圖書館 / Authentication System of Biometrics without Preprocessing Deep Learning in Digital Library

李正吉、林聖邦、李崇瑋 / Cheng-Chi Lee  & Shang-Bang Lin & Chung-Wei Li

隨著科技與網路的快速發展,有許多傳統圖書館結合資訊科技邁向圖書館數位化。但目前數位圖書館在認證使用者方面,大多以帳號密碼登入為主,可能有資訊安全上的疑慮。目前指靜脈辨識技術已在多個地方實際運用,如能把指靜脈辨識技術運用在登入數位圖書館上,將能提高閱覽時的安全性,又能增加便利性。目前在指靜脈辨識上大多是先將圖片預處理,凸顯特徵後再去做指靜脈辨識,過程繁瑣。因此本研究實驗是使用不經過預處理的圖像,讓深度學習模型辨識指靜脈圖像,藉此減少預處理過程。我們使用SDUMLA與FV-USM資料庫的指靜脈圖像資料做測試實驗,測試ImageNet LSVRC圖像分類大賽中較出名的深度學習模型。實驗結果比較不同模型的辨識度,最後以ResNet的辨識度最高。DOI: 10.6575/JILA.202206_(100).0001

100-01